

Slides at www2.mathematik.hu-berlin.de/~rothganm/

What is formalisation? What has been formalised? How to formalise?

Outline of today's talk

- 2 What is formalisation?
- 3 What has been formalised?
- 4 How to formalise?

What is a proof? ●00	What is formalisation?	What has been formalised?	How to formalise?	Learning Lean 000
What is a	proof?			

Proof: formal definition

A mathematical proof is a sequence of *formal* logical deductions, starting from a set of axioms.

Proof: practical definition

A mathematical proof is a sequence of arguments convincing an educated reader. *In principle*, all details can be filled in.

Proof correctness is a social convention!

What is a proof? ○●○	What is formalisation?	What has been formalised?	How to formalise?	Learning Lean 000
What is a	proof: practica	al issues		

- proof correctness is a social convention
- folklore results: believed true but no written proof
- most papers have errors: most are minor and fixable, some errors are grave

Example (Poincaré's result about stability of the solar system)

Every single issue of Acta Mathematica retracted and reprinted.

Example (Four-colour theorem)

Proofs by Kempe and Tait (around 1880) each believed correct — for 11 years.

Example (Classification of finite simple groups)

Gap (quasi-thin case), only closed after 21 years

Some papers are wrong

Example (Baker's theorem, 1970)

- key lemma is false (Rempe–Sixsmith 2019)
- many papers using it can be fixed; another bunch is now open
- five much-cited papers "generalised" the argument

Example (Hilbert's 21st problem)

"Proof" by Plemelj (1908) found wrong in 1970s solved in 1990 with different answer

Example (Hilbert's 16th problem, part 2)

Solution by Dulac (1923), found wrong in 1981

What does formalisation mean?

answer 1: humans write more detailed proofs

2. 9, 9, 9, 9,	VK IN W X	(Tor1
2. *. *. *.	iping p	Littall and L. mith have
3. 7. 7. 7.	to a bola	(tps) and 2.
4, 9, 8, 9, 48, 21	px = hod (ex)	5.7 mil 3.
5. 0. 0. 0. 00 00 0		1.3 and Badd
to a point part a	paux hallow)	Own and DEI and Lot 4.
2. 4. 4. 5. 20 - 4	retry to it a wind	Owo -
$h_1 = h_2 = h_2$, $\mu_2 = \mu_1 = \mu_1$	renegative a lord	P. P.M.D. MIT T. MIT S = y
2. R. W. S. 19 8.	retyste = y bet	2.01411 and 0. mit t m a
22. m. m. m. re m m	w (ps)=p s (ps)	public) and to min to yo
33. A. A. A. A. A. A.	max_rhindl	ITTADA) and for 10%
If. e. v. e. ye = + styll a optu	ye e y Destel	D.T waf LL.
12. *. *. *. **	legia = alysi	LOOD deviat at 5 -7
34. v. v. v. v. v.	e (pa) = (eg) e	Nymi and Lin.
25.0,010,02.0000	VALUE ACCOUNTS.	101 HIT Mar. 12.
21. 0. 0. 0. 31 0 1 10 1	28.8.10M	0.7 and 10.
27. 7. 7. 7. 37	(pointing y land	ais 5.8(al) Belick and 8. via 20
10. m. m. m. 10. m. 10. 77 * 1	statue (paig	(Spa) and 17.
March 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,	vx.ubula	(rears) and id., 18.
11. 0. 0. 0. DOB - TT - TT T	20.00.20	5.7 mill 291
D. c. c. c. Hart M. **	27	Light) and L and C = y and Out
22	No. 0. 10	(80) and 21., 20,
27. 0. 0. 0. TO B * 19 * *	20.0.0	but and least and 22.
N. S. S. S. N	27.7***	GID and 32.
20. m. m. m	10 10 1 1	(ik) and Mu
No. a. a. a. syn a tria yn a t	21 12 4 2	Same and Mr.
17. 19.84		(feel)
21. 17 8.0	31.04.4	(30) and 27.4 of en. dat
24. ly vy w	31'07# 4	(30) and 20.
in. only symmetry	34' MPg *	5.835H and 291
21.9	tyle yng e	NAME OF BRIDE
22. v. v. v. W 1	21.12	(hers), (42) and (11., 35.
33. v. v. v. raly sym a	27 79.0.0	(a) val 1,4(k) and 12.
M. P. P. T.	taly yell a	Data and \$7500 and \$5,
Figure 8.1. The full derivation of a sin	ple group-theoretic	fact (from
mathematical losic analish service yes	if the in the IPC's	e regia (normanie si
commencement organ, stig and the late and		

problem: impractical in the large how to formalise "draw a picture"?

answer 2: automated theorem proving

problems: hit or miss; opaque

answer 3: interactive theorem proving

What is a proof?	What is formalisation? ○○○●	What has been formalised?	How to formalise?	Learning Lean 000
Why forma	alise?			

- verification: peer reviewer's dream only check definitions and theorems make sense
- understanding: reader chooses amount of detail Demo by Patrick Massot and Kyle Miller:

https://www.imo.universite-paris-saclay.fr/ ~patrick.massot/Examples/ContinuousFrom.html

- database of theorems: searching known and related results only requires *statements* of main results
- creation: can this lemma be generalised? unused assumptions?
- collaboration: less trust required

What has been formalised already: let's guess

- Banach–Schauder open mapping theorem
- Birkhoff Ergodic Theorem
- Mandelbrot set is connected
- Cauchy–Kovalevskaya Theorem on existence of an analytical solution of an analytical PDE
- Denjoy's theorem: a C^2 orientation-preserving diffeomorphism of the circle with an irrational rotation number is conjugate to a rotation
- Sphere eversion
- Existence of Haar measure
- Existence of a smooth partition of unity
- Feit-Thompson theorem/odd order theorem
- Fermat's Last Theorem
- Four colour theorem
- Galois correspondence
- Herman-Yoccoz theorem on linearization of a circle diffeomorphism
- Jordan curve theorem
- Liouville theorem: an entire holomorphic function is a constant
- Hilbert's Nullstellensatz
- Picard-Lindelöf theorem (existence and uniqueness of solutions of ODEs)
- Poincaré–Bendixson Theorem
- Poincaré recurrence theorem
- Sard's Theorem
- The continuum hypothesis is independent of ZFC

Only 5 are not formalised yet (AFAIK)

- Cauchy–Kovalevskaya Theorem on existence of an analytic solution of an analytic PDE
- Denjoy's theorem on rotation number
- Herman–Yoccoz theorem on linearization of a circle diffeomorphism
- Fermat's Last Theorem (in progress)
- Sard's Theorem (in progress)

- 2005 Four colour theorem
- 2012 Odd Order Theorem
- 2014 Kepler's conjecture (Hales et al)
- 2019 Ellenberg-Gijswijt's result on the cap set conjecture
- 2022 Liquid Tensor Experiment (Commelin et al): fundamental lemma about condensed mathematics
- 2022 unit fractions project before referee report
- 2023 upper bound on diagonal Ramsey numbers before referee report
- 2023 polynomial Freiman-Rusza conjecture (Tao et al) took 3 weeks; complete before paper submitted

Some ongoing projects

- Almost Periodicity in Arithmetic Progressions
- Existence of an aperiodic monotile
- Prime Number Theorem (Kontorovich–Tao et al)
- Fermat's Last Theorem (Buzzard)
- Carleson's theorem (van Doorn et al)

A zoo of interactive theorem provers

- four widely used interactive theorem provers: Coq, Isabelle/HOL, Mizar and Lean
- large mathematics libraries: mathcomp, Archive of formal proofs, Mizar Mathematical Library, mathlib
- Cog: standard tool for software verification
- Isabelle: simple foundations, powerful automation
- Mizar: huge library
- Lean: newest (<10 years old), fast-growing

Formalising research mathematics

- need a large library of mathematics
- need an integrated library: connecting different fields, in a compatible way
- Why Lean/mathlib?
 - large integrated library
 - growing *fast*
 - system and tools are improving quickly
 - friendly and diverse community (github, zulip)

What is a proof?	What is formalisation?	What has been formalised?	How to formalise? 00●0	Learning Lean
Short dem	C			

What is formalisation like?

- fussy; has learning curve
- it's fun like a video game or programming
- makes you understand mathematics better

What is a proof? 000	What is formalisation?	What has been formalised?	How to formalise? 000●	Learning Lean

Demo: backup in case of technical issues

E Con	ppact.lean ×	$\forall \ \square \ \cdots$	\equiv Lean Infoview \times
Mathlit	> Topology > UniformSpace >		▼ Compact.lean:168:0
155	simp (compan const of not mem (compl singleton mem phds byv) (Classical not not 2 rfl)]		Expected type
157	<pre>#align uniform_space_of_compact_t2 uniformSpaceOfCompactT2</pre>		a: Type u_1
158	4-1		p: Type u_2
159	/-:		Y. Type u_s instt ² : UniformSr
161			inst 1: UniformSr
162	·		instt : CompactSpa
163			f: g = B
164	/ Heine-Cantor: a continuous function on a compact uniform space is uniformly		h: Continuous f
165	continuous/		E UniformContinuou
166	theorem CompactSpace.uniformContinuous of continuous [CompactSpace q] {f : $q \rightarrow \beta$ }		
167	(h : Continuous f) : UniformContinuous f :=		 All Messages (0)
168	calc map (Prod.map f f) $(\mathcal{U} \alpha)$		
169	= map (Prod.map f f) (<i>N</i> ^s (diagonal α)) := by rw [nhdsSet_diagonal_eq_uniformity]		
170	_ ≤ N ^s (diagonal β) := (h.prod_map h).tendsto_nhdsSet mapsTo_prod_ma	ap_diagonal	
171	$\leq \mathcal{U} \beta$:= nhdsSet_diagonal_le_uniformity		
172	<pre>#align compact_space.uniform_continuous_of_continuous CompactSpace.uniformContinuous_of_co</pre>	ntinuous 🗌	
173			
174	/ Heine-Cantor: a continuous function on a compact set of a uniform space is uniformly	- T	
175	continuous/		
176	theorem IsCompact.uniformContinuousOn_of_continuous {s : Set α } {f : $\alpha \rightarrow \beta$ } (hs : IsCompact	ts)	
177	<pre>(hf : ContinuousOn f s) : UniformContinuousOn f s := by</pre>		
178	<pre>rw [uniformContinuousOn_iff_restrict]</pre>		
179	<pre>rw [isCompact_iff_compactSpace] at hs</pre>		
180	<pre>rw [continuousOn_ift_continuous_restrict] at hf</pre>		
181	exact CompactSpace.uniformContinuous_of_continuous hf		
182	<pre>#align is_compact.uniform_continuous_on_of_continuous IsCompact.uniformContinuousOn_of_con</pre>	tinuous	
183			

- play the natural number game: https: //adam.math.hhu.de/#/g/leanprover-community/NNG4
- textbook: mathematics in Lean https://leanprover-community.github.io/ mathematics_in_lean/index.html
- further resources:

https://leanprover-community.github.io/learn.html

• questions? ask on zulip https://leanprover.zulipchat.com/

What is a proof?	What is formalisation?	What has been formalised?	How to formalise? 0000	Learning Lean 0●0
Lean tutor	ials			

- some past events
 - Edinburgh, May 27-31 (women and mathematicians of minority gender)
 - Düsseldorf (September 2023)
 - Regensburg (September 2023)
 - Rome (Jan 2024)
 - Marseille (March 2024)
 - Singapore (March 2024)
 - Bonn (May 2024)
- up-to-date list: https:

//leanprover-community.github.io/events.html

- Lean study group, summer 2024 (email me if interested)
- Sebastian Pokutta, Tibor Szabó: Lean-related project
- Marc Kegel had a student using Lean
- ask your thesis advisor if a formalisation project is possible :-)

Thanks for listening! Any questions?

Comparing mathematical libraries: a closer look

- Archive of formal proofs: 4.4 million lines not integrated, articles are re-developing theory about half is "computer science" (e.g., properties of algorithms and programs)
- Coq's library: different focus from standard mathematics (e.g., care about constructivism)
- MML: large and integrated; no statistics on size
- mathlib: 1.6 million lines, integrated

Sard's theorem: prerequisites and reduction to normed spaces

- measure zero subsets of a manifold
- locally Lipschitz maps
- nowhere dense, meagre and sigma-compact sets
- local diffeomorphisms

Other mathematics

- interior and boundary of a manifold
- inverse function theorem for manifolds
- immersions, submersions and embeddings

Sphere eversion project: cleaning up, moving code into mathlib

Long-term vision: formalising the foundations of symplectic geometry