Dr. E. Hellmann

Algebraic Geometry I Exercise Sheet 12 Due Date: 23.01.2014

Exercise 1:

Let (X, \mathcal{O}_X) be a ringed space. Let \mathscr{F} and \mathscr{G} be \mathcal{O}_X -modules and let \mathscr{E} be a locally free \mathcal{O}_X -module. Let us further write

$$\mathscr{E}^{\vee} = \mathscr{H}om_{\mathcal{O}_X}(\mathscr{E}, \mathcal{O}_X).$$

- (i) Show that $(\mathscr{E}^{\vee})^{\vee} \cong \mathscr{E}$.
- (ii) Show that $\mathscr{H}om_{\mathcal{O}_X}(\mathscr{E},\mathscr{F})\cong \mathscr{E}^{\vee}\otimes_{\mathcal{O}_X}\mathscr{F}.$
- (iii) Assume that \mathscr{F} is of finite presentation. Show that the canonical map

$$\mathscr{H}om_{\mathcal{O}_X}(\mathscr{F},\mathscr{G})_x \longrightarrow \operatorname{Hom}_{\mathcal{O}_{X,x}}(\mathscr{F}_x,\mathscr{G}_x)$$

is an isomorphism.

(iv) Let $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of ringed spaces and let \mathscr{E}' be a locally free \mathcal{O}_Y -module of finite rank. Show that there is a canonical and functorial isomorphism

$$f_*(\mathscr{F} \otimes_{\mathcal{O}_X} f^*\mathscr{E}') \cong f_*\mathscr{F} \otimes_{\mathcal{O}_Y} \mathscr{E}'.$$

(Hint: Use the adjointness of f_* and f^* to construct a canonical and functorial map. Then localize on Y to show that this map is an isomorphism.)

Exercise 2:

Let X be a noetherian scheme and let $j: U \hookrightarrow X$ be an open subscheme. Let \mathscr{F} be a coherent \mathcal{O}_U -module. We want to show that there is a coherent sheaf \mathscr{G} on X such that $\mathscr{G}|_U \cong \mathscr{F}$. To do so we proceed as follows:

- (i) Show that $j_*\mathscr{F}$ is a quasi-coherent sheaf such that $(j_*\mathscr{F})|_U \cong \mathscr{F}$.
- (ii) Assume that X is affine and construct a coherent subsheaf $\mathscr{G} \subset j_*\mathscr{F}$ that extends \mathscr{F} .
- (iii) In the general case use a cover $X = V_1 \cup \cdots \cup V_n$ of X by finitely many open affine subschemes. Set $X_i = U \cup V_1 \cup \cdots \cup V_i$ and use (ii) to extend \mathscr{F} successively from W_i to W_{i+1} .

Exercise 3:

Let $i: Z \hookrightarrow X$ be a closed immersion and write $\mathscr{I} = \ker(i^{\sharp}: \mathcal{O}_X \to i_*\mathcal{O}_Z).$

- (i) Show that i_* and i^* define an equivalence of categories between $(Q Coh_Z)$ and the full subcategory of $(Q Coh_X)$ consisting of those objects \mathscr{F} such that $\mathscr{IF} = 0$.
- (ii) Assume in addition that X is locally noetherian. Show that i_* and i^* define an equivalence of categories between (Coh_Z) and the full subcategory of (Coh_X) consisting of those objects \mathscr{F} such that $\mathscr{IF} = 0$.

Exercise 4:

Show that the following schemes are not affine by either giving an example of a quasi-coherent sheaf \mathscr{F} that is not generated by its global sections (i.e. the canonical morphism

$$\Gamma(X,\mathscr{F})\otimes_{\Gamma(X,\mathcal{O}_X)}\mathcal{O}_X\longrightarrow \mathscr{F}$$

is not surjective) or giving an example of a short exact sequence of quasi-coherent sheaves that is not exact on global sections.

- (i) $\mathbb{A}_k^n \setminus \{0\}$ for $n \ge 2$ and a field k.
- (ii) \mathbb{P}_k^n for $n \ge 1$ and a field k.
- (iii) The open subscheme $U = \mathbb{P}_k^n \setminus V_+(T_1, T_2)$ for $n \ge 2$.
- (iv) The closed subscheme $V_+(T_0T_2^2 T_1^3) \subset \mathbb{P}^2_k$.
- (v) The affine line with a double point.

Homepage: www.math.uni-bonn.de/people/hellmann/alggeom